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Abstract This study is concerned with linear feedback control in finite element modeling of
transient convection-diffusion in an incompressible fluid. Our aim is to introduce a linear feedback
that solves the corresponding tracking problem for any sufficiently smooth target temperature field.
The control aspects are discussed and we summarize convergence results. Numerical results for a
test problem are included to illustrate the approach.

Introduction
The use of feedback control in engineering simulation is increasing
(Gunzburger and Kim, 1998; Gunzburger and Manservisi, 2000a, b;
Gunzburger et al., 2000) and the ideas are also related to dynamic grid
adaption based on computational error control. Gunzburger and Manservisi
(2000a) consider the tracking problem for the Navier-Stokes equations that
govern motion of a fluid for the incompressible case. In the present work, we
consider the following initial-boundary value problem

Tt þ u ·7T ¼ a72T þ g; inV

Tj›V ¼ 0; Tð·; 0Þ ¼ T0

ð1Þ

where V , Rn ðn ¼ 2; 3Þ is a bounded domain. In equation (1) T is the
temperature, u is the convective velocity, a is the thermal diffusivity, g is a
source term and T0 is the initial temperature, which satisfies T0j›V ¼ 0: The
velocity field satisfies the incompressibility condition 7 · u ¼ 0: The tracking
problem requires finding a suitable heat source function g (depending on both
T and T*) such that the solution of equation (1) approaches for large t, a desired
target temperature profile T* with T* j›V ¼ 0; in some norm.
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The controller we propose for the convection-diffusion equation and the
subsequent analysis follow closely the treatment by Gunzburger and
Manservisi (2000a) and in some sense complement that study since together
they provide a comprehensive linear feedback control law for solving the
tracking problem for both velocity and temperature.

Control theoretical aspects
The simplest tracking problem encountered in applications is that of tracking a
zero target signal. Consider the following linear time invariant (LTI) system in
state-space form:

_x ¼ Ax þ Bv

y ¼ Cx

xð0Þ ¼ x0

ð2Þ

where A, B and C are constant real matrices of size n £ n; n £ m and p £ n;
respectively. Here x(t) is the state vector (size n £ 1), y(t) is the output vector
(or system’s response vector of size p £ 1) and v(t) is the input or control vector
(size m £ 1). We also assume that the system is controllable, that is for any
initial state x1 and any final state x2 there exists an input signal v that
transfers the system from state x1 to state x2 in a finite time. A neccessary and
sufficient condition of controllability is rank ½A;AB; . . .;An21B� ¼ n:
Tracking a zero signal for system (2) requires introduction of a feedback
control v (that is, v depends on the state x), such that

t!1
lim yðtÞ ¼ 0: Due to a

well known theorem in control theory (the Bass-Gura Theorem, Rugh (1996)),
controllability of system (2) implies existence of a matrix K, such that the
eigenvalues of A 2 BK have negative real parts (in fact, it is always possible to
solve for K such that the eigenvalues of A 2 BK are arbitrary). Then, the
control law vðtÞ ¼ 2KxðtÞ automatically solves this tracking problem. Indeed,
the state of equation (2) implies _x ¼ ðA 2 BKÞx; hence xðtÞ ¼ eðA2BKÞtx0 and
consequently, yðtÞ ¼ CeðA2BKÞtx0: It is clear from the latter expression that

t!1
lim yðtÞ ¼ 0:

Next, let us consider the problem of tracking a general target signal r(t) for
system (2); that is, we require

t!1
lim ðyðtÞ2 rðtÞÞ ¼ 0: We now assume that

p ¼ m and that (CB)21 exists. We also do not require the system that is
controllable. Define eðtÞ ¼ yðtÞ2 rðtÞ and let H be any Hurwitz matrix; that is
a matrix whose eigenvalues have negative real parts. Then, an easy
computation implies:

_e ¼ He þ ðCBv þ CAx 2 _r 2 HeÞ; ð3Þ

hence, if we introduce the feedback control
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v ¼ ðCBÞ21ð_r þ H ðCx 2 rÞ2 CAxÞ ð4Þ

equation (3) becomes _e ¼ He; which implies
t!1
lim ðyðtÞ2 rðtÞÞ ¼ 0:

Finally, we present another solution of the tracking problem for a general
target r. The feedback control law we use is similar in form to the one which
will be introduced later for the convection-diffusion equation, however, it is
valid under rather restrictive hypotheses on matrices B and C. We assume that
p ¼ n and that C 21 exists. Moreover, we require that system (2) be
controllable. Then, the Bass-Gura Theorem implies existence of a matrix K,
such that A 2 BK has negative real part eigenvalues. Next, we introduce the
control input

v ¼ B21ð_s 2 AsÞ2 Kðx 2 sÞ; ð5Þ

where s ¼ C21r: Note that in the latter expression _s 2 As is the state space
equation’s operator evaluated at the scaled (by C 21) target r. The term x 2 s is
the (scaled by C 21) control error y 2 r: Substituting equation (5) in the state
equation (2) we infer

ð _x 2 _sÞ ¼ ðA 2 BKÞðx 2 sÞ:

Clearly, xðtÞ2 sðtÞ! 0 as t !1 (since A 2 BK is a Hurwitz matrix), and
therefore

t!1
limðyðtÞ2 rðtÞÞ ¼ 0: The motivation for the definition of the control

law applied in the present study for equation (1) is based on the idea that for
large time t, it is desired that the fluid temperature field be very close to the

profile T* , so ›T
›t þ u ·7T 2 a72T ¼ g becomes (at least approximately):

›T*
›t

þ u ·7T* 2 a72T* ¼ g ð6Þ

for large time t. Hence, it is reasonable to define a controller using the Ansatz

g ¼
›T*
›t

þ u ·7T* 2 a72T* þ GðT;T* Þ

where the function G(T,T*) is such that jGðT;T* Þj attains very small values
when t is large, so that equation (6) is satisfied. The most obvious choice of
G(T,T*) is T 2 T* ; possibly scaled by a factor b. It is clear that the magnitude
of b will influence, how rapidly jGðT;T* Þj will decrease and as a consequence
how fast equation (6) is going to be valid.

In the present tracking problem, we use the weak formulation of equation (1)
given below where L 2 and H 1, H 21 represent the usual Hilbert spaces
(Evans, 1998).
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Find T [ L2ðð0; t* Þ; H 1
0ðVÞÞ

T
H 1ðð0; t* Þ; H 21ðVÞÞ; such that

kTt; vlþ aðT; vÞ þ bðv;TÞ ¼ k g; vl;;v [ H 1
0ðVÞ ð7Þ

Tð·; 0Þ ¼ T0 ð8Þ

a.e in (0, t*), where

aðT; vÞ ¼ a

Z
V

7T ·7v dx;

bðv;TÞ ¼

Z
V

vu ·7T dx;

with the following linear feedback control law:

k g; vl ¼
›T*
›t

; v

� �
þ aðT* ; vÞ þ bðv;T* Þ þ bðT 2 T* ; vÞL2ðVÞ ð9Þ

where T* [ L2ðð0; t* Þ; H 1
0ðVÞÞ

T
H 1ðð0; t* Þ; H 21ðVÞÞ is the target

temperature profile and b is a constant that determines the controller’s
performance. In fact a value of b outside a certain range will result in
divergence from the target temperature. From the first Gauss-Green identity,
equation (9) implies

g ¼
›T*
›t

þ u ·7T* 2 a72T* þ bðT 2 T* Þ ð10Þ

which can be interpreted physically as a heat source control term. The term
bðT 2 T* Þ is clearly the scaled pointwise error between system’s response and
target temperature T*. Furthermore, the control law (equation (10)) is quite
similar to equation (5) for the LTI case; it is a linear combination of the
problem’s differential operator evaluated at the target T* and the control
error T 2 T* :

Proposition 1. Let b , aC 2; where a is the thermal diffusivity, C is the
Poincaré constant, and w ¼ T 2 T* : Then

kwkL 2ðVÞ # eðb2aC 2Þtkwð·; 0ÞkL 2ðVÞ; a:e: in ð0; t* Þ ð11Þ

For the special case t* ¼ 1; the following asymptotic result holds; L2ðVÞ2

t!1
lim wð·; tÞ ¼ 0 (and consequently L2ðVÞ2

t!1
lim ðTð·; tÞ2 T* ð·; tÞÞ ¼ 0)

Proof. (See Kavouklis, 2002).
It follows that the feedback control law defined in equation (9) is indeed a

solution of the tracking problem. Moreover, the temperature field converges
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exponentially in time to the target profile, as inequality (11) indicates. Clearly,
the value of Poincaré’s constant is crucial to the controllet’s performance. An
analogous result to that of Proposition 1 holds for the backward Euler
discretized problem: A

Proposition 2. If b , aC 2; then

kwnþ1kL 2ðVÞ #
1

½1 2 ðb2 aC 2ÞDt�nþ1
kw0kL 2ðVÞ; ;n [ {0; 1; . . .;M};

and for the case t* ¼ 1; L2ðVÞ2
t!1
lim wn ¼ 0 (and therefore L2ðVÞ2

n!1
lim ðT n 2 T n

*
Þ ¼ 0Þ

Proof. (See Kavouklis, 2002).
Consider a finite element subspace Sh of H 1

0ðVÞ: The fully discrete
formulation follows as:

find {T nþ1
h }n[{0;1;...;M} [ Sh such that

1

Dt

�
T nþ1

h ; vh

�
þ a

�
T nþ1

h ; vh

�
þ b

�
vh;T

nþ1
h

�

¼ k g nþl; vhlþ
1

Dt
ðT n

h ; vhÞL 2ðVÞ;;vh [ Sh

T 0
h ¼ PhðT0Þ

ð12Þ

where g nþ1 [ S*
h and Ph is the elliptic projection. The control functional g nþ1 is

defined by

k g nþ1; vhl ¼
1

Dt

�
Ph

�
T nþ1

*
2 T n

*

�
; vh

�
L 2ðVÞ

þ a
�
Ph

�
T nþ1

*

�
; vh

�

þ b
�
vh;Ph

�
T nþ1

*

��
þ b

�
T nþ1

h 2 Ph

�
T nþ1

*

�
; vh

�
L 2ðVÞ

ð13Þ

Substituting equation (13) into equation (12) and defining wnþ1
h ¼

T nþ1
h 2 Ph

�
T nþ1

*

�
; we have equivalently:

find {wnþ1
h }n[{0;1;...;M} [ Sh such that

1

Dt
2 b

� ��
wnþ1

h ; vh

�
L 2ðVÞ

þ a
�
wnþ1

h ; vh

�
þ b

�
vh;w

nþ1
h

�
¼

1

Dt

�
wn

h; vh

�
L 2ðVÞ

;;vh [ Sh

ð14Þ

w0
h ¼ T 0

h 2 Ph

�
T 0

*

�
¼ Ph

�
T0 2 T 0

*

�
ð15Þ

and A
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Proposition 3. If b , aC 2; then

kwnþ1
h kL 2ðVÞ #

1

ð1 2 ðb2 aC 2ÞDtÞn
kw0

hkL 2ðVÞ; n ¼ 0; 1; . . .;M ð16Þ

and L2ðVÞ2
n!1
lim wn

h ¼ 0 for the case t* ¼ 1:

Proof. (See Kavouklis, 2002).
This leads directly to the following result: A
Theorem. Let b , aC 2 and T* [ L1ðð0; t* Þ; L2ðVÞÞ

T
L2ðð0; t* Þ;

H 2ðVÞÞ: Then

kT nþ1
h 2 T nþ1

*
kL 2ðVÞ #

1

ð1 2 ðb2 aC 2ÞDtÞn
kw0

hkL 2ðVÞ

þ h2kT nþ1
*

kL 2ðVÞ; n ¼ 0; 1; . . .;M

and therefore,
n!1
lim

h!0
limkT nþ1

h 2 T nþ1
*

kL 2ðVÞ ¼ 0; if t* ¼ 1:

Proof. We write

T nþ1
h 2 T nþ1

*
¼ ðT nþ1

h 2 PhðT
nþ1
*

ÞÞ þ ðPhðT
nþ1
*

Þ2 T nþ1
*

Þ:

Then

kT nþ1
h 2 T nþ1

*
kL 2ðVÞ # kw nþ1

h kL 2ðVÞ þ kPhðT
nþ1
*

Þ2 T nþ1
*

kL 2ðVÞ:

Since

kPhðT
nþ1
*

Þ2 T nþ1
*

kL 2ðVÞ # h2kT nþ1
*

kL 2ðVÞ ð17Þ

we obtain

kT nþ1
h 2T nþ1

*
kL 2ðVÞ #

1

ð1 2 ðb2 aC 2ÞDtÞn
kw0

hkL 2ðVÞ þ h2kTnþ1
*

kL 2ðVÞ: ð18Þ

Using b, aC 2 and as kT nþ1
*

kL 2ðVÞ remains bounded, equation (18) implies

n!1
lim

h!0
lim kT nþ1

h 2T nþ1
* kL 2ðVÞ ¼ 0; for the case t* ¼1; and the proof is

completed. A
Finally, we note that the condition T* [ L2ðð0; t* Þ;H

2ðVÞÞ in the
hypotheses of the Theorem is true when ›V [ C 2: Moreover, this regularity
condition implies the interpolation inequality (17) (Becker et al., 1981).

Finite element algorithm
In the preceding Theorem, we show convergence of the approximate solution to
the target temperature. However, in practice, instead of solving directly the
actual control problems (12) and (13) for T n

h ; we find it more convenient to solve
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problem (14) for the error w n
h and then reconstruct T n

h from the identity
T n

h ¼ w n
h þ PhðT

n
*
Þ: Let {f1;f2; . . .;fMh

} be a basis of Sh. Allowing vh ¼ fi;
i ¼ 1; . . .;Mh and introducing the expression for wh, we obtain:

XMh

j¼1

1

Dt
2 b

� �
ðfj;fiÞL 2ðVÞ þ aðfj;fiÞ þ bnþ1ðfi;fjÞ

� �
c nþ1
j

¼
1

Dt

XMh

j¼1

ðfj;fiÞL 2ðVÞc
n
j ; i ¼ 1; . . .;Mh:

ð19Þ

or

U nþ1cnþ1 ¼ Xcn;

for the unknown coefficients c of wh, where U nþ1 and X are Mh £ Mh matrices
as indicated in equation (19). Moreover, c is obtained by elliptic projection
(equation (15))

XMh

j¼1

ðfj;fiÞH 1
0ðVÞc

0
j ¼ ðT0 2 T0

*
; fiÞH 1

0ðVÞ; i ¼ 1; . . .;Mh;

or in matrix form

Xc0 ¼ r0 ð20Þ

The computational algorithm follows as:

(1) Set n ¼ 0 and solve Xc0 ¼ r0 to obtain w0
h;

(2) Compute the matrix U n+1,

(3) Solve U nþ1cnþ1 ¼ Xcn to obtain w nþ1
h ;

(4) Solve Xcnþ1
*

¼ rnþ1
*

where

T nþ1
*

¼
XMh

j¼1

c nþ1
*; j

fj; r nþ1
*; j

¼ ðT nþ1
*

;fjÞH 1
0ðVÞ; j ¼ 1; . . .;Mh

to obtain the projection PhðT
nþ1
*

Þ of T nþ1
*

on Sh.

(5) Compute T nþ1
h using the identity T nþ1

h ¼ w nþ1
h þ PhðT

nþ1
*

Þ;

(6) Set n ¼ n þ 1 and go to step 2.

Remark. To avoid oscillatory behavior of wh, a local Peclet condition needs
to be satisfied, hence h or kuk must be sufficiently small.
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Numerical studies
Consider the tracking problem on V ¼ ð0; 1Þ2; using a uniform Cartesian grid
of bilinear elements.

Lemma. For V ¼ ð0; 1Þ2; and any u [ H 1
0ðVÞ the Poincaré inequality

holds with Poincaré constant C ¼ 1ffiffi
2

p : That is,

1ffiffiffi
2

p kukH 1
0ðVÞ # k7ukL 2ðVÞ

Proof. The proof (Kavouklis, 2002) is a consequence of the G-N-S inequality
(e.g. Evans, 1998).
Now, let us consider four test cases – one for a steady state target profile and
three cases with transient target temperature profiles. The incompressible
velocity field we use is u ¼ ðu; vÞ; where

uðx; y; tÞ ¼ 2ð1 2 cosð2ptxÞÞð1 2 x2Þ½pt sinð2ptyÞðl 2 y2Þ2 yð1 2 cosð2ptyÞÞ�

vðx; y; tÞ ¼ 2ð1 2 cosð2ptyÞÞð1 2 y2Þ½pt sinð2ptxÞðl 2 x2Þ2 xð1 2 cosð2ptxÞÞ�

The initial temperature field is a truncated Gauss bell function of amplitude 1
2 ;

centered at 1
4 ;

3
4

� �
; whose support has radius 1

8 ; that is,

Tðx; y; tÞ ¼
e
2 e

1

64 x21
4ð Þ

2
þ y23

4ð Þ
2
2 1

64

� �
; if x 2 1

4

� �2
þ y 2 3

4

� �2
, 1

64

0; otherwise

8><
>:

The target temperature profiles are: A
Case 1. The same truncated Gauss bell of amplitude 1

2 ; but now centered at
3
4 ;

1
4

� �
as a steady target.

Case 2. The same form of Gauss bell, centered at 3
4 ;

1
4

� �
; but with amplitude

d time variant (i.e. d ¼ 1
2 2

1
4 sinðt).

Case 3. A similar Gauss bell to that in case 1 but with center moving on the
circumference of the circle 1

8 ð5 þ cosð2ptÞ; 2 þ sinð2ptÞÞ:
Case 4. A moving Gauss bell, as in case 3, but with amplitude d changing

in time (i.e. d ¼ 1
2 2

1
4 sinðtÞ) as in case 2.In Figures 1 and 2 we plot

kTh 2 T*kL 2ðVÞ against time for all four cases, when the convergence
condition b , aC 2; C ¼ 1ffiffi

2
p ; on the control constant is violated. The mesh size

and thermal diffusivity are h ¼ 0:1 and a ¼ 0:1; respectively, and the time step
Dt ¼ 0:2 for case 1 and Dt ¼ 0:1 for cases 2-4. The value of b is 20, 50, 60 and
70 for cases 1-4, respectively. Clearly, the controller fails to track the target
temperature field and in fact the error blows up relatively rapidly as the
exponential nature of inequality (11) dictates. An objection that may be raised
at this point is that the values of b we have chosen are much greater than the
quantity aC 2 (which is equal to 0.05 for this case). However, for a value of
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Figure 1.
L 2-error when b$ aC 2:
cases 1 (left) and 2 (right)
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Figure 2.
L 2-error when
b$ aC 2: cases 3 (left)
and 4 (right)
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b slightly greater than 0.05, the same singular behavior of the error is observed,
but at a greater time t.

In Figures 3 and 4 we have plotted the L2-error kTh 2 T*kL 2ðVÞ for all four
cases and for different values of the control parameter b. The mesh size is
h ¼ 0:1 for cases 1 and 2 and h ¼ 0:03 for cases 3 and 4. Thermal diffusivity
a ¼ 0:1 is for all four cases. Here, the convergence criterion b , aC 2 is
satisfied and the error decreases as is expected from inequalities (11) and (18).
We also observe that as b decreases, the controllet’s performance is enhanced
(i.e. the error curve falls more rapidly). This behavior is also in agreement with
estimates (11) and (18). Also we observe that the error after being decreased
rapidly attains a small asymptotic value, which in fact cannot be improved
by reducing b. Clearly, this behavior is due to the term h2kTnþ1

*
kL 2ðVÞ in

inequality (18), which dominates the error; hence a finer mesh has to be selected
in order to improve our numerical controllet’s performance. Indeed, as is
evident from Figure 4 (compared to Figure 3), reduction of the mesh size results
in a smaller limit value for the L2-error:

Figures 5 and 6 shows quantitatively the speed of the controller in terms of
the number of steps required to achieve an error level less than 0.001. For this
case study, we used a mesh size h ¼ 0:1 and a time step Dt ¼ 0:01: The
thermal diffusivity a was taken as 0.1. The range of control constant b we
considered was from 210 to 0. Clearly, as b increases, a larger number of time
steps is needed to obtain an error less than 0.001. This is expected from
estimates (11) and (18) and is of course in agreement with the qualitative
behavior of the error related to b in Figures 3 and 4.

In the remaining Figures 7-9, we give plots of both the computed controlled
and target temperature fields for case 4, with h ¼ 1

60 ; Dt ¼ 0:1; b ¼ 0:01;
a ¼ 0:1 and t [ ½0; 1�: It is clear from these illustrations that the controller
decreases the initial Gauss’s bell amplitude while simultaneously adjusting
fluid temperature to the target profile. By time t ¼ 0:2; the initial Gauss bell
has almost faded away and after that the controller drives the system to its
desired state. The choice of small enough mesh size so that the local Peclet
condition is satisfied is important here. Had we used a larger mesh size, the
controller would have been able to adjust the location of the computed bell to
that of the target, however the computed amplitude would have not been
accurate, due to the presence of oscillations of the numerical solution.

Conclusions
In this study, we consider the approach in Gunzburger and Manservisi (2000a)
and develop it for control of convection diffusion. Theoretical convergence
results for the controllers are proved and the strategy is implemented and
tested for several 2D cases. Numerical studies are carried out for both steady
state and transient problems.
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Figure 3.
L 2-error when
b,aC 2: cases 1 (left)
and 2 (right)
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Figure 4.
L 2-error when

b,aC 2: cases 3 (left)
and 4 (right)
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Figure 5.
Number of steps required
for L 2-error less than
0.001 against control
constant b: cases 1 (left)
and 2 (right)

HFF
13,3

378



Figure 6.
Number of steps required

for L 2-error less than
0.001 against control

constant b: cases 3 (left)
and 4 (right)
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Figure 7.
Computed and target
profiles for case 4, t ¼ 0,
0.2, Dt ¼ 0.1, h ¼ 1/60,
a ¼ 0.1, b ¼ 0.01

Figure 8.
Computed and target
profiles for case 4,
t ¼ 0.4, 0.6, Dt ¼ 0.1,
h ¼ 1/60, a ¼ 0.1,
b ¼ 0.01
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We remark that the approach may be particularly, useful in loosely coupled
transport applications where the convective velocity is first computed and then
the subsequent heat or mass transfer problem controlled as suggested here.
If there is strong feedback between the transport problem through, for instance,
buoyancy, thermo-capillary surface tension or density gradients, then the
control problem is more complex since the velocity u is no longer known a
priori but instead evolves in a coupled way via the momentum equations and
analyzing this problem remains an open question.
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